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Abstract Soil organic carbon and nitrogen (SOC-N) dy-
namics are indicative of the human-induced disturbances
of the terrestrial ecosystems the quantification of which
provides insights into interactions among drivers, pres-
sures, states, impacts, and responses in a changing envi-
ronment. In this study, a process-based model was devel-
oped to simulate the eight monthly outputs of net primary
productivity (NPP), SOC-N pools, soil C:N ratio, soil
respiration, total N emission, and sediment C-N transport
effluxes for cropland, grassland, and forest on a hectare
basis. The interaction effect of the climate change drivers
of aridity, CO2 fertilization, land-use and land-cover
change, and best management practices was simulated on
high altitude ecosystems from 2018 to 2070. The best
management practices were developed into a spatiotempo-
rally composite index based on SOC-N stock saturation, 4/
1000 initiative, and RUCLE-C factor. Our model predic-
tions differed from the remotely sensed data in the range of

− 64% (underestimation) for the cropland NPP to 142%
(overestimation) for the grassland SOC pool as well as
from the global mean values in the range of − 97% for the
sediment C and N effluxes to 60% for the total N emission
from the grassland. The interaction exerted the greatest
negative impact on the monthly sediment N efflux, total
N emission, and soil respiration from forest by − 90.5, −
82.7, and − 80.3% and the greatest positive impact on the
monthly sediment C effluxes from cropland, grassland,
and forest by 139.3, 137.1, and 133.3%, respectively,
relative to the currently prevailing conditions.

Keywords Bestmanagement practices . Carbon and
nitrogen cycles . Ecosystembiogeochemistry . STELLA
model simulation

Introduction

Soil organic carbon and nitrogen (SOC-N) dynamics
are stoichiometrically coupled to one another and
biogeochemically link the (a)biotic components of
a given terrestrial ecosystem. The spatiotemporal
SOC-N dynamics are one of the most important
indicators of ecosystem-level productivity and
health (O’Rourke et al. 2015). The ecosystem struc-
ture (e.g., biodiversity and phenology) and function
(e.g., energy flows and biochemical cycles) in
higher altitudes are most sensitive to climate change
since the biogeochemical cycles show distinct pat-
terns in snow-covered and snow-free seasons
(Elmendorf et al. 2012; Ernakovich et al. 2014).
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Climate change, land-use and land-cover change
(LULCC), and management practices are the main
drivers of change, in particular, in the high altitude
ecosystems, which act as the water tower and influ-
ence the water quality and quantity of the upper and
lower watersheds.

Since the human-induced alterations of the C
and N cycles are the main drivers of global cli-
mate change, numerous data-driven and process-
based models of the C and N dynamics at the
ecosystem level have been developed in related
literature (Piao et al. 2020). However, how to
sustainably manage the spatiotemporal dynamics
of the ecosystem C and N stocks and fluxes de-
pends on how to best take into account the inter-
action (multiplicative) effects. For example,
Stehfest et al. (2019) used five integrated assess-
ment models, the state-of-the-art global climate-
energy-economy models, to assess the interaction
among the six drivers of population, wealth, con-
sumption preferences, agricultural productivity,
land-use regulation, and trade. They reported that
changes in population, agricultural efficiency, land-
use regulation, and consumption behaviors most
influenced the future expansion of cropland and
pasture as well as most reduced food-security risks
(Stehfest et al. 2019). Based on the four process-
based ecosystem models of BIOME-BGC, JULES,
ORCHIDEE, and O-CN, Churkina et al. (2010)
found that the interaction among N deposition,
LULCC, and climate change led to a mean C
sequestration rate of 56 ± 39 Tg C year−1 by the
European ecosystems between 1951 and 2000 due to the
CO2 and N fertilization effects on vegetation regrowth.
From their meta-analysis, He et al. (2019) identified the
interaction (nonadditive) effect of climate change
and LULCC on biodiversity-related ecosystem ser-
vices. To detect the effect of the interaction mech-
anism between climate change and LULCC on soil
fauna, Yin et al. (2019) conducted an experimental
field study by reconstructing two climatic and five
land-use regimes. Peters et al. (2019) pointed out
that ecosystem function was more severely altered
in the arid lowlands and the cold highlands due to
the interaction between the drivers of climate and
land use instead of the individual main (additive)
effects of the drivers. Xiong et al. (2014) stated
that the SOC sequestration rate was the product of
climate factors and ecosystem type.

There still exists a large knowledge gap about how to
quantify and input the interaction among climate
change, LULCC, and management practices into the
decision-support systems. Relying only on the main
effects of econometric, ecological, or technological
drivers instead of their interaction effects does not por-
tray a realistic understanding of how to best take into
account the sustainable development strategies during
the process of decision-making. Therefore, the objective
of this study was to quantify the interaction effects of
climate change, LULCC, and best management prac-
tices on the spatiotemporal dynamics of SOC-N pools
and other ecosystem behaviors by devising a process-
based model.

Materials and methods

Description of study region

Ardahan watershed with a land surface area of about
56 km2 was selected as the study region and has a mean
altitude of 2400 + 400 m above sea level (Fig. 1). Based
on the long-term data (1970–2000), the study region had
a long-term mean annual temperature of 3.3 °C with a
mean minimum and maximum temperature of − 9.9 °C
in January and 14.8 °C in August and a total annual
precipitation of 673mmwith its maximum andminimum
fall from May to June and January to February, respec-
tively (https://www.worldclim.org/data/worldclim21.
html).

Based on a meteorological station installed in the
study region, the six variables in Table 1 were also
measured from 31 October 2018 to 19 September
2019. Its dominant soil type is haplic chernozems, with
a mean slope of 13 ± 11%. According to CORINE
(2012), evergreen forests and grasslands are its domi-
nant land covers.

Field sampling strategy

The entire study region was divided into the grids of
1 km2. A systematic random sampling design with a
minimum distance of 100 m between each sampling
point was adopted to represent all the different ecosys-
tem types using ArcGIS (Fig. 1). From the resultant 97
sampling points, soil samples for a depth of 0 to 30 cm
were gathered in July 2018. The soil samples were
oven-dried at 45 °C, grinded using ceramic and glass
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mortars, sieved through a 2-mm sieve, and ana-
lyzed to determine the total C and N contents
using a CHNS elemental analyzer (Thermo

Scientific Flash 2000, Germany). These values
were converted to the SOC-N stock values (t C
or N/ha) in 2018 as follows (FAO 2019):

Fig. 1 Location map of Ardahan watershed and spatial distribution of soil sampling points and land uses/covers based on CORINE (2012)
in the study region

Table 1 Descriptive statistics of meteorological station data in the study region from 31 October 2018 to 19 September 2019

Climatic variable Mean SD CV Min Median Max IQR

Temperature (°C) 9.5 8.3 86.9 −13.1 9.7 32.1 12.7

Relative humidity (%) 60.5 22.5 37.1 8.8 59.8 100.0 29.6

Wind direction (compass degree) 212.7 98.2 46.2 0.1 240.6 359.9 178.2

Wind speed (m/s) 1.7 1.2 69.3 0.0257 1.4 7.5 1.3

Net solar radiation (W/m2) 311.4 223.8 71.9 0.02 278.2 857.4 371.7

Evapotranspiration (mm/day) 8.9 6.3 70.8 0.3 7.8 24.1 10.8
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SOC t C=hað Þ ¼ SOC content g=kgð Þ=1000
� BD kg=m3

� �

� 1−CF %ð Þ=100ð Þ � SD mð Þ
� 10 ð1Þ

where BD and CF refer to bulk density and coarse
fragment fraction, respectively, which were on average
estimated at 1370 kg/m3 and 12% based on the 97 soil
samples. SD is the soil depth of 0.3 m used in this study.

In this study, the following remotely sensed data
were used from the following sources: evapotranspira-
tion (ET) (MOD16A2) (https://search.earthdata.nasa.

gov/search?q=MOD16A2), land surface temperature
(LST) (MOD11A2) (https://search.earthdata.nasa.
gov/search?q=MOD11A2), and net pr imary
productivity (NPP) (MOD17A3) (https://search.
earthdata.nasa.gov/search?q= MOD17A3) from
Moderate Resolution Imaging Spectroradiometer
(MODIS), land-use dynamics (CORINE) (https://land.
copernicus.eu/pan-european/corine-land-cover/clc-
2012), precipitation (PPT) (https://www.worldclim.
org /da ta /wor ldc l im21.h tml) , representa t ive
concentration pathways (RCP) 6.0 Community Climate
System Model-4 (CCSM4) precipitation (https://www.
worldclim.org/data/cmip6/cmip6_clim2.5m.html), GAI
& ET0 Climate Database V2 (https://cgiarcsi.

Fig. 2 A flowchart as an overview of the methodological steps and their sequential order adopted in this study
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community/2019/01/24/global-aridity-index-and-
potential-evapotranspiration-climate-database-v2/), and
RUSLE-C factor.

Modeling process

The flowchart is illustrated as an overview of the sepa-
rate steps and their sequential order adopted in this study
in Fig. 2. Our model named SOC-NAnatolia was based on
the algorithms of CENTURY (Parton et al. 1993), SOC-
RATES (Grace et al. 2006), and CEM (Evrendilek and
Wali 2001). The model runs on a monthly basis at a 1-
km2 spatial resolution whose simulations are expressed
in t C or N/ha/month and uses geographical information
systems (GIS) and remotely sensed data. SOC-NAnatolia

consisted of metabolic and structural litter and active,
slow, and passive SOC-N pools (Fig. 3). The allocation
ratio of 3, 37, and 60%was assumed to partition the total
SOC-N stocks into active, slow, and passive ones, re-
spectively (Parton et al. 1993; Evrendilek and Wali
2001). The model generates the following eight outputs
of NPP, SOC-N pools, soil C:N ratio, soil respiration,

total N emission, and sediment C-N transport effluxes
for cropland, grassland, and forest. NPP flux was esti-
mated using the temperature-dependent Miami model
(Lieth 1975) as follows:

NPP g C=m2=year
� � ¼ 3000= 1þ e1:315−0:0119*T

� �� 0:45 ð2Þ

where T refers to air temperature and 0.45 is the C
content of the dry weight plant biomass. According to
the allocation parameters used by the SOCRATESmod-
el (Grace et al. 2006), NPP was partitioned into the leaf,
branch, stem, and root biomass parts as well as into
labile (metabolic) and recalcitrant (structural) litter com-
ponents depending on the ecosystem type. In order for
the vegetation growing period to be determined, the
threshold temperature of 5 °C was assumed for its start
and end times (Evrendilek and Wali 2001). According
to CENTURY (Parton et al. 1993), the maximum de-
composition rates (k, month−1) used in this study were
0.3625, 1.3875, 0.55416667, 0.0166667, and 0.000375
for the structural and metabolic litter and active, slow,
and passive SOC-N pools, respectively (Fig. 3).

Fig. 3 Algorithm of SOC-
NAnatolia model

Environ Monit Assess         (2020) 192:457 Page 5 of 14   457 

https://doi.org/https://www.worldclim.org/data/worldclim21.html
https://doi.org/https://www.worldclim.org/data/worldclim21.html


www.manaraa.com

Scenario analyses

Climate change

The main components of global climate change include
air temperature rise, altered PPT and ET regimes, and
increased atmospheric CO2 concentration. In this study,
an aridity index that reflected the composite change in
temperature, ET, and PPT was developed for the period
of 2018 to 2070 at a 1-km2 spatial resolution thus:

Aridity Index ¼ PPT

PET
ð3Þ

where PPT is the precipitation (mm/month) and PET is
the potential evapotranspiration (mm/month).

Monthly PPT data for 2070 (average of 2061–2080)
were obtained from the RCP 6.0 scenario of CCPM4

composite climate model with IPPC5 (CMIP5) data
scaled down at a resolution of 30 arc seconds (approx-
imately 1 km) (https://www.worldclim.org/cmip5_30s).
Monthly mean PET data for the period of 1970–2000
were obtained from Trabucco and Zomer (2019)
(https://figshare.com/articles/Global_Aridity_Index_
and_Potential_Evapotranspiration_ET0_Climate_
Database_v2/7504448/3). Future PET data were
created using the four scenarios of 5% and 15%
increases and decreases by 2070. The aridity index
was incorporated in the model as the regulatory factor,
with its values below or above unity reducing and
enhancing the SOC-N and NPP values, respectively.

The atmospheric CO2 concentration (AtmCO2)
was assumed to rise in the model simulations from
the current level of 400 to 670 ppmv in 2070
according to RCP 6.0 as an exponential function
of time (Goudriaan 1992; Goudriaan and Zadoks
1995) thus:

Fig. 4 SOC-N saturation index map of the study area Fig. 5 RUSLE-C index map of the study area
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AtmCO2 ¼ 400� 1þ 0:00084ð Þð Þt ð4Þ
The CO2 fertilization (CO2-F) effect on NPP was

expressed as a logarithmic function as follows (Kimball
et al. 1993):

CO2−F ¼ 1þ 0:6� log AtmCO2ð Þ=400
�

ð5Þ

where 0.6 is the coefficient used for the vegetation
response to CO2-F.

Land-use and land-cover change

The following three scenarios were adopted to map
LULCC of the study region for 2070: (1) 10%
deforestation in return for 10% increase in crop-
lands; (2) 10% decrease in croplands in return for
10% increase in grasslands; and (3) 10% decrease
in grasslands in return for 5% increase in forest-
land and 5% increase in cropland. The future map
of LULCC among cropland, forestland, and grass-
land in 2070 was created converting the 1-km2

resolution grids of the current LULCC map in
accord with the above three scenarios.

Best management practices

The 4/1000 C/ha/year initiative for 50 years according
to COP21 (2015) was adopted to quantify the tempo-
ral effect of the best management practices on SOC-N
stocks. This initiative was made to spatially change
equally depending on the indices of SOC-N saturation
and RUSLE-C (land-cover management) (2/1000 + 2/
1000). The SOC-N saturation index (Fig. 4) ranged
from 0 to 1, thus representing the peak and valley for
the SOC-N saturation, respectively, and was factored
in the initiative thus:

2=1000� SOC−N Saturation Index� 50 yr ð6Þ
The RUSLE-C index (Fig. 5) also varied between 0

and 1, thus indicating areas with low and high potential
for improvement, respectively, and was incorporated in
the initiative thus:

2=1000� RUSLE−C Index� 50 yr ð7Þ

Interaction effects

The four components whose interaction effects were
simulated consisted of aridity index with 5% increase
in PET, CO2 fertilization, 10% decrease in croplands in
return for 10% increase in grasslands, and the best
management practices.

Results and discussion

The geo-referenced point values of the SOC-N stocks
for a depth of 0–30 cm in 2018 were interpolated using
the inverse distance weighting (IDW) approach. The
IDW-based maps of the SOC-N stocks were used as
the initial values to run SOC-NAnatolia. The eight month-
ly model outputs includedNPP, SOC-N stocks, soil C:N

Fig. 6 Map of potential increase in SOC-N stock (t C/ha) for the
next 50 years (in 2070) based on the adoption of the best manage-
ment practices
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ratio, soil respiration, total N (N2O- and NO-N) emis-
sion, and sediment C-N transport effluxes.

Based on the combination of the 4/1000 initiative and
the SOC-N saturation and RUSLE-C maps, the map in
Fig. 6 was created to illustrate the spatial distribution of
the potential increase in the SOC-N stocks in 2070 as a
result of the adoption of the best management practices.
According to the resultant map (Fig. 6), the blue and
yellow colors indicated the first and second priority
areas where the SOC-N pools can be maximized, re-
spectively. The red color showed the areas where the
SOC-N storage should be maintained.

The model outputs were compared to both related
remote sensing data and related literature in order to test
the model performance. The SOC-N field campaign
results in 2018 were compared to SoilGrids data at the
250-m resolution (SoilGrids-250) (Fig. 7) for each eco-
system type in terms of means and standard deviations
(Fig. 8). The maximum mean SOC pool belonged to the
cropland and forestland, while the minimum one oc-
curred with the forestland and grassland according to
the SoilGrids-250 and in situ field datasets, respectively
(Fig. 8). Also, the SoilGrids-250 data exhibited a higher
variability than did the field data for each ecosystem
type (Fig. 8). The mean SOC pool of our ground truth
soil data was 16 and 18% lower for the cropland (62.6 +

5.2 t C/ha) and the grassland (59.8 + 3.9 t C/ha), respec-
tively, and 4% higher for the forest (66.3 + 2.6 t C/ha)
than that of the SoilGrids-250 data (Table 2). In other
words, the SoilGrids-250 data underestimated the forest
SOC pool but overestimated the cropland and grassland
SOC pools in the high altitude ecosystems of the
Ardahan watershed. The SoilGrids-250 data
overestimated the in situ SON storage by 17.5 and
13% for the forest and cropland, respectively, and
underestimated it by 142% for the grassland (Table 2).
Shirato (2017) reported that the average SOC content
(31 g C/kg) of the SoilGrids-250 data for the agricultural
land of Rwanda was about 25% higher than the in situ
field data of 800 soil samples (25 g C/kg) (r2 = 0.05).

The SOC-N stocks and their C/N ratios in 2018 and
2070 are illustrated in Fig. 9, while the remaining model
outputs in 2018 and 2070 are presented in Tables 2 and
3, respectively. The global values from the related liter-
ature and the local values of the remotely sensed data
were compared to our model outputs for 2018 (Table 2).
The difference between the model predictions and the
remotely sensed data for the study region ranged from −
64% for the cropland NPP to 142% for the grassland
SOC pool (the negative and positive signs denote the
model underestimation and overestimation, respective-
ly) (Table 2). The difference between the model

Fig. 7 A comparison of SoilGrids-250 data versus field data for SOC stocks in 2018 for each land cover (G, grassland; F, forestland; and A,
agricultural land) used to run SOC-NAnatolia
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predictions for the study region and the global
mean values based on the related literature varied
between − 97% for the sediment C and N effluxes
from the LULCC and 60% for the total N emis-
sion from the grassland (Table 2).

TheMOD17A3HV006 product at a 500-m resolution
for the study region showed that the modeled NPP was
lower than the MODIS NPP by the range of 23% for the
forest to 64% for the cropland on a monthly basis
(Table 2). The related literature indicated that our

monthly model predictions were lower than the global
mean soil respirations of forest, grassland, and cropland
(Raich and Tufekcioglu 2000) by 77, 93, and 95%,
respectively (Table 2). The cold continental climate, the
high altitude, and the short vegetation period of the study
region appeared to account for the lower NPP and soil
respiration values than the global mean values for the
ecosystem types (Koven et al. 2017). Themonthly model
predictions of the total N emission were lower by 88 and
22% for the forest and cropland, respectively, and higher

Fig. 8 A comparison of SoilGrids-250 data versus field data in terms of a mean and b standard deviation values of SOC-N stock for each
land-cover class (A, arable land; F, forest; and G, grassland)
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by 60% for the grassland than the global mean values
(Stehfest 2005) (Table 2). All the predicted monthly
sediment C and N effluxes were lower 97% than the
global mean values (Vanmaercke et al. 2011), regardless
of the ecosystem type, except for the sediment N efflux
from the forest being 71% lower (Table 2).

The simulated interaction among the four compo-
nents (aridity index with the 5% increase in PET, CO2

fertilization, the 10% fall in croplands in exchange for
the 10% rise in grasslands, and the best management
practices) yielded the spatial distribution maps of the
eight monthly model outputs between 2018 and 2070 (a

total of 52 years × 12 months × 8 outputs = 4992 maps).
The simulated interaction effect in 2070 resulted in the
three minimum increases in the annual SON stock by
3.8 and 5.2% for the forest and grassland, respectively,
and the monthly sediment N flux for the grassland by
4.2% (Table 3). The interaction led to the three maxi-
mum increases in the monthly sediment C effluxes from
the cropland, grassland, and forest by 139.3, 137.1, and
133.3%, respectively.

The three interaction-induced minimum decreases
were the monthly grassland and cropland NPP by −
14.6 and − 35.4%, respectively, and the monthly total N

Fig. 9 Spatial distribution maps of a SOC and b SON stocks and c C/N ratio in 2018 and d–f 2070 in response to the interaction effect
scenario simulated using SOC-NAnatolia
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(N2O +NO) emission from the cropland by − 56.0%.
The interaction exerted the greatest negative impact on
the monthly sediment N efflux, total N emission, and
soil respiration from the forest by − 90.5, − 82.7, and −
80.3%, respectively (Table 3). By 2070, the monthly
NPP increased for the forest but decreased for the grass-
land and cropland, whereas the monthly sediment N
efflux exhibited the opposite pattern (Table 3). The
monthly soil respiration decreased for the forest and
grassland but increased for the cropland. Regardless of
the ecosystem type, the increasing trends occurred with
the monthly sediment C efflux and the annual SOC-N
storage, whereas the decreasing trend was observed only
with the monthly total N emission (Table 3).

The soil C:N ratio varied between 11.3 in the crop-
land and 12.8 in the forest in 2018 but significantly rose
between 12.2 in the cropland and 51.4 in the forest in
response to the interaction effect (Fig. 9). The high soil
C:N ratios were previously reported to typically under-
lay forests, peatlands, and wetlands in northern, high
altitude, and/or precipitation-intense ecosystems
(Helliwell et al. 2001; Watt and Palmer 2012; Ballabio
et al. 2019). The high soil C:N ratios were considered to

be conducive to greater immobilization and denitrifica-
tion rates of N as well as indicative of low soil fertility
(Helliwell et al. 2001; Watt and Palmer 2012; Ballabio
et al. 2019). The extremely low mean annual tempera-
ture of the study region appeared to be the primary
driver of the high C:N ratios projected in 2070.

Conclusions

The SOC-NAnatolia model integrated both temporal
and spatial dynamics on a monthly and hectare
bases. Its simulations for the 52-year period
(2018–2070) predicted the interaction effects of
the four human-induced drivers of climate change
(CO2 fertilization and increased aridity), land-use
change, and the best management practices on the
three high altitude ecosystem types. The best man-
agement practices were turned into a spatiotempo-
ral composite index by introducing the SOC-N
stock saturation concept and combining it with
the RUSLE-C factor map and the 4/1000 initiative.
In general, the model successfully predicted the

Table 3 SOC-NAnatolia predictions of the interaction effects on each land cover in 2070 relative to the initial conditions in 2018 in terms of
the seven model outputs

Unit Forest Grassland Cropland

Monthly NPP t C/ha/month

mean + SD (% change)
min-max

0.63 + 0.13 (31.25)
0.35–0.93

0.41 + 0.06 (−14.6)
0.29–0.89

0.31 + 0.05 (−35.4)
0.27–0.77

SOC stock t C/ha/year

mean + SD (% change)
min-max

136.28 + 55.17 (114.2)
70.33–301.51

137.44 + 28.79 (129.7)
66.57–289.08

144.56 + 20.68 (127.1)
71.38–264.77

SON stock t N/ha/year

mean + SD (% change)
min-max

5.43 + 0.27 (3.8)
4.89–6.06

5.43 + 0.35 (5.4)
4.84–6.74

6.09 + 0.47 (9.5)
4.93–6.87

Soil respiration t C/ha/month

mean + SD (% change)
min-max

5.9 × 10−3 + 3 × 10−3 (− 80.3)
2 × 10−3–1.5 × 10−3

0.0064 + 0.002 (− 73.3)
1.6 × 10−3–1.5 × 10−2

0.0066 + 0.001 (72.5)
1.9 × 10−3–1.3 × 10−3

N emission (N2O +NO) t N/ha/month

mean + SD (% change)
min-max

4.5 × 10−5 + 3 × 10−5 (− 82.7)
4 × 10−6–1.2 × 10−4

6 × 10−5 + 3 × 10−5 (− 75.0)
4 × 10−6–2.3 × 10−4

1.1 × 10−4 + 3 × 10−5 (− 56.0)
6 × 10−6–1.6 × 10−4

Sediment C efflux t C/ha/month

mean + SD (% change)
min-max

6.3 × 10−5 + 3 × 10−4 (133.3)
3.3 × 10−4–1.4 × 10−3

6.4 × 10−4 + 1 × 10−4 (137.1)
3.1 × 10−4–1.3 × 10−3

6.7 × 10−4 + 1 × 10−4 (139.3)
3.3 × 10−4–1.2 × 10−3

Sediment N efflux t N/ha/month

mean + SD (% change)
min-max

2.5 × 10−5 + 1 × 10−6 (− 90.5)
2.3 × 10−5–2.8 × 10−5

2.5 × 10−5 + 1.6 × 10−6 (4.2)
2.3 × 10−5–3.1 × 10−5

2.8 × 10−5 + 2 × 10−6 (12.0)
2.3 × 10−5–3.2 × 10−5
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eight variables according to the global mean
values from the related literature and the local
values of the remotely sensed data although the
literature-derived generic model parameters were
not calibrated using the ground observation values.
Not only can SOC-NAnatolia help to better under-
stand the emergent ecosystem behaviors generated
by the interaction among drivers, pressures, states,
impacts, and responses in a changing climate, land
use, and land management but also can provide
practical and dynamic insights into where to best
intervene in the ecosystem structure and function.
Its simulation capability of sediment C-N transport
effluxes enables its outputs to be coupled to the
quantification of the metabolism dynamics of the
aquatic ecosystems by the other GIS-based water-
shed modeling tools such as MapShed, MOHID
Land, and SWAT. It also plays a significant role
in bridging the gaps between the remotely sensed
data and the understanding of emergent ecosystem
behaviors in terms of the fine versus coarse reso-
lutions of the spatiotemporal datasets and the for-
mulation and implementation of public policy ac-
tions. In order for the reliable and robust decisions
to be ensured, further validations remain to be
conducted so as to operate the model in ecosys-
tems where diverse terrain types and climate fea-
tures are dominant.
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